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Climate changes across the last 24,000 years provide key insights into Earth system responses

to external forcing. Climate model simulations 1, 2 and proxy data 3–8 have independently al-

lowed for study of this crucial interval; however, they have at times yielded disparate conclu-

sions. Here, we leverage both types of information using paleoclimate data assimilation 9, 10

to produce the first proxy-constrained, full-field reanalysis of surface temperature change

spanning the Last Glacial Maximum to present. We demonstrate that temperature variabil-

ity across the last 24 kyr was linked to two primary climatic mechanisms: radiative forcing

from ice sheets and greenhouse gases; and a superposition of changes in the ocean over-

turning circulation and seasonal insolation. In contrast with previous proxy-based recon-

structions 6, 7 our results show that global mean temperatures warmed through the Holocene.

When compared with recent temperature changes 11, our reanalysis indicates that both the

rate and magnitude of modern warming are unusual relative to the changes of the last 24 kyr.
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The interval of time spanning the Last Glacial Maximum (LGM; 21–18 ka) to the preindustrial1

era represents the most recent large-scale reorganization of the climate system, over which the2

Earth rapidly transitioned out of a cold, glaciated state with vast Northern Hemisphere ice sheets3

into a warm interglacial. Constraining the evolution of global surface temperatures during this4

critical time period provides an excellent opportunity to better understand the mechanisms of large-5

scale climate change, including Earth system interactions and responses to various forcings (e.g.,6

greenhouse gases, albedo/ice-sheet, and orbital changes).7

A number of prior studies have sought to characterize the global surface temperature evolu-8

tion from the LGM to present 3–7. Of particular note, Shakun et al. 3 and Marcott et al. 6 established9

a global mean surface temperature (GMST) estimate spanning the deglacial and Holocene peri-10

ods using ∼80 marine and terrestrial temperature proxies (hereafter, the Shakun-Marcott Curve;11

SMC). However, subsequent comparisons of SMC to other global temperature reconstructions12

and transient LGM-to-present model simulations revealed discrepancies surrounding the timing,13

magnitude, and rapidity of deglacial warming and of millennial-scale cooling events 2, 4. One of14

the most prominent differences between SMC and climate model simulations is the direction of15

global temperature change across the Holocene. Whereas SMC shows a cooling trend, model-16

ing results indicate there should be a warming, a phenomenon termed the “Holocene Temperature17

Conundrum” 2. More recent work has sought to reconcile these differences by using either inde-18

pendent 12, 13 or additional 7, 12 proxies, and by correcting for possible proxy seasonal biases 2, 8, 12.19

Nonetheless, all of these approaches have a fundamental limitation in that none provide a dynami-20

cally constrained full-field view of climate evolution since the LGM. Conversely, although climate21

models provide a self-consistent and spatially complete representation of the climate system, they22

are known to have biases due to inaccurate representation of climate processes 10, 14. Moreover, the23

fidelity of paleoclimate simulations of the LGM and Holocene depends on the accurate knowledge24

of paleoclimate boundary conditions, which are known with varying levels of certainty and may25

not be independent from proxies 2, 15, 16.26
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The Last Glacial Maximum Reanalysis27

Here, we revisit the evolution of global temperatures from the LGM to present using an offline28

paleoclimate data assimilation approach that formally combines proxy and independent model in-29

formation 9, 10, 17. The resulting “Last Glacial Maximum Reanalysis” (LGMR) product offers the30

first proxy-constrained, dynamically consistent, and spatiotemporally complete view of climate31

change for the last 24 kyr. The LGMR enables us to diagnose the major modes of climate vari-32

ability, refine our understanding of global temperature changes across the Holocene, and compare33

current anthropogenic global warming with the rate and magnitude of change seen in the recent34

geological record.35

Following ref. 10, we focus on assimilating geochemical proxies for sea-surface temperature36

(SST) with established Bayesian proxy forward models 18–21. To ensure that the proxy data have37

sufficient temporal resolution and length to inform our reconstruction, we required that records38

be at least 4,000 years long, have a median time resolution of 1,000 years or less, and contain39

a radiocarbon-based age model. The temporal criteria were relaxed for several (7) sites in the40

Southern Ocean to increase coverage in this data-poor region. Conversely, some SST records41

that met these criteria were excluded due to complications related to proxy interpretation and (or)42

their location (Methods). In total, our vetted compilation consists of 539 records, including 13343

alkenone (UK′
37 ), 25 TetraEther indeX of 86 carbons (TEX86), 123 planktic foraminiferal Mg/Ca,44

and 258 planktic foraminiferal oxygen isotope (δ18Oc) time series (Fig. 1 and Extended Data45

Figure 1).46

The diversity, size, and spatial coverage of our proxy compilation offers new insight into47

LGM-to-present climate evolution on its own. However, transient offline data assimilation further48

leverages the full-field dynamical insights available from climate models in order to bypass issues49

related to heterogeneous proxy spatial distribution 3, 4, 6–8. The model “prior” for the assimilation50

consists of 50-yr average states from 17 LGM-to-present time-slice experiments conducted with51
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the isotope-enabled Community Earth System Model version 1 (iCESM1; Extended Data Table52

1 and Methods; 10, 22). We reconstruct climate at 200-year intervals, adhering to the resolution53

limitations of the majority (>90%) of our proxy data. For a given time interval, we estimate proxy54

values from the model prior at the locations where geochemical measurements exist using our55

Bayesian forward models, which take into account seasonal growth preferences on a per-species56

basis for δ18Oc and Mg/Ca 20, 21, and seasonal production for UK′
37 (19; Methods). The difference57

between the actual and the forward modeled proxy value (the “innovation”) is weighted by the58

Kalman gain, which considers the covariance between the proxy location and the climate fields59

as well as uncertainties in the proxies and the prior, producing an “update” that is then added60

to the model prior state. For our final reconstruction, we generated a posterior ensemble of 50061

realizations, based on random sampling of 60 prior states for each time interval, with 20% of proxy62

records withheld for error quantification and validation testing. We also sampled age uncertainty63

to ensure that this source of error was propagated into our assimilated fields. As in proxy-only64

analyses 3, 4, 6, 7, 12, this results in some temporal smoothing of our LGMR ensemble mean, but does65

not impact the fidelity of millennial-scale trends or features (Methods).66

The LGMR highlights the exceptional and spatially heterogeneous nature of deglacial cli-67

mate change (Fig. 2). Reconstructed GMST reveals a distinct three-part sequence across the last68

24 ka. From 24–17 kyr BP, the Earth is in a ubiquitously cold glacial state. The thermal imprints69

of the North American and Eurasian ice sheets are near their maximum extent, with terrestrial70

cooling relative to the pre-industrial below −20◦C across the glaciated high northern (>45◦N)71

and southern (>45◦S) latitudes (Fig. 2). At 17.1 ka (95% CI = 18.5–16.1 ka; Methods), global-72

scale deglaciation (the second stage) abruptly begins. Deglacial global warming shows a familiar 3
73

two-step rise that is punctuated by the millennial-scale Bølling-Allerød (14.8–12.8 ka) to Younger74

Dryas (12.8–11.7 ka) events. Following the Younger Dryas cooling event, the Earth enters its75

final transition towards the present interglacial. In the third part of the GMST sequence, early76

Holocene (11 kyr BP onward) warming stabilizes by 9.3 ka (95% CI = 10.9–8.4 ka) and is fol-77
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lowed by a small (∼0.5◦C) but significant (>99% probability from 9.3–0 ka) global warming until78

preindustrial times. A vestigial cold imprint over northeastern North America is all that remains79

of the once-great Northern Hemisphere ice sheets at 9 ka as mild, albeit widespread, high-latitude80

warming ensues; Antarctica shows a notable east-west thermal dipole next to a relatively warm81

Southern Ocean; whereas mild cooling persists across much of the tropics (Fig. 2). All told, we82

estimate a global warming of 7.1±0.9◦C (2σ) from the deglaciation onset to pre-industrial, which83

is larger than the value reported in ref. 10 (6.1◦C). The greater warming found here reflects the84

LGM period referenced (ref. 10 uses 23–19 kyr, which corresponds to ∼6.8±1.0 ◦C in the LGMR)85

as well as differences in iCESM model priors, proxy data distribution, and the degree of covariance86

localization used (Methods).87

Validating the LGMR88

Offline data assimilation products are strongly dependent on the covariance structure of the model89

prior 23. A limitation of the LGMR is that it is based on priors from a single model (iCESM), which90

are inevitably biased by model deficiencies, resolution, and uncertainties in boundary conditions.91

However, we can objectively test the veracity of the LGMR, including its spatial representation,92

using two independent methods of statistical validation. First, we use our posterior LGMR fields93

to reconstruct withheld proxy time series (e.g., ref. 17). Across the ensemble, the majority of94

records are skillfully reconstructed (Methods) with no obvious signs of regional biasing (Extended95

Data Figure 2). Second, following ref. 10, we compare posterior δ18O of precipitation (δ18Op) to96

independent ice core- and speleothem-derived δ18Op time series (Extended Data Table 2). On a97

global scale, we find notable improvement in the posterior comparison of ∆δ18Op over the modeled98

state, with a ∼30% reduction of error and a large increase in variance explained (Extended Data99

Figure 3). LGMR recovers between 65 to 90% of the ice core δ18Op variance (n = 13 records;100

Extended Data Table 2), including divergent Holocene trends in east vs. west Antarctica δ18Op101

(Extended Data Figure 4). Both tests suggest that our posterior assimilation is robust, but the close102
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correspondence between LGMR δ18Op and ice core proxy records in particular emphasizes that103

the LGMR is producing a realistic climate state.104

Drivers of global SAT change105

To gain further insight into the drivers of global surface temperature change during the last 24106

ka, we decompose our LGMR temperature fields into spatiotemporal modes of variability using107

Empirical Orthogonal Function (EOF) analysis (Methods). As expected, the first spatial mode,108

EOF1, exhibits positive loading across the globe and explains the majority (>90%) of the sur-109

face temperature covariance during the last 24 ka (Fig. 3a). This mode is clearly associated with110

deglaciation, with the strongest amplitude concentrated atop the North American and Fennoscan-111

dian ice sheets. The uniform nature of EOF1 implies an association with changes in greenhouse112

gas (GHG) radiative forcing and ice sheet albedo. Given the monotonic nature of the associated113

principal component time series, PC1, GHG forcing 24 can explain 92% of the EOF1 variance114

(Fig. 3b). However, there are notable differences between the two time series: during the early- to115

mid-Holocene, GHG radiative forcing increases at ca. 12 ka and then gradually decreases, while116

PC1 steadily increases. This implies GHG forcing alone is not sufficient for explaining the leading117

mode of global temperature variability.118

Modeling experiments indicate that the magnitude of ice sheet albedo forcing is comparable119

to (if not greater than) GHG forcing across the deglacial transition 10, 13, 25. By considering GHG120

and ice sheet forcing together, we account for 98% of the variance in PC1 as well as the observed121

warming during the Holocene (Fig. 3c). The inclusion of ice sheet albedo forcing also explains the122

strong EOF1 loading atop North America and Fennoscandia (Fig. 3a). Although other radiative123

forcings, such as vegetation and dust, likely also impacted LGM-to-present temperature change124

10 our EOF results imply that these were probably of lesser importance in terms of their global125

footprint, particularly during deglaciation.126

The second mode of global temperature variability, EOF2, explains only ∼3.5% of the vari-127
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ance. However, it is distinct from its neighboring tailing modes and physically interpretable (Meth-128

ods). This mode is a hemispheric dipole, with strong positive loading across the Southern Ocean129

and negative loading spanning much of the Northern Pacific, North America, and the North At-130

lantic (Fig. 3b). Its associated time series, PC2, consists of both long-term trends as well as131

millennial-scale peaks during the deglaciation. We interpret this mode to represent a superposi-132

tion of two sources of climate variability: changes in Atlantic Meridional Overturning Circulation133

(AMOC; the millennial-scale features) and orbitally-induced shifts in high latitude seasonality (the134

long-term trends). To illustrate this, we decompose PC2 into its long-term “trend” (Fig. 3c, purple)135

and millennial-scale “residual” components (Fig. 3c, yellow).136

The trend component of PC2 represents a precession cycle, with a peak at ca. 11 ka. Both137

summer insolation intensity at 65◦N 26 and Southern Hemisphere summer duration at 65◦S 27 offer138

good approximations of this long-term change (Fig. 3c). However, we interpret the latter as the139

likely driver. Enhanced summer insolation in the Northern Hemisphere would not cause mean140

annual cooling; this conflicts with conventional Milankovitch orbital theory 28. In addition, spatial141

correlation analyses (of either orbital series) with surface temperatures indicate that the strongest142

coupling occurs in the Southern Hemisphere (Extended Data Figure 5b). The strong loading of143

EOF2 in the Southern Ocean in particular could point towards a feedback with regional sea ice;144

a longer summer (and shorter winter) would increase the extent of summertime sea ice retreat145

while decreasing its growth during wintertime, resulting in an increase in mean annual surface146

temperatures 27.147

The residual component of PC2 closely follows (R2 = 0.80) 231Pa/230Th proxy records of148

AMOC from the Bermuda Rise 29–31 (Fig. 3c). Prior studies have also identified this “bipolar see-149

saw” mode 32, 33, which represents the millennial-scale events that occurred during the last deglacia-150

tion (Heinrich event 1, the Bølling-Allerød, and the Younger Dryas). Correlation analysis shows151

that Northern Hemisphere surface temperatures in LGMR are strongly related to AMOC changes152
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(Extended Data Figure 5c). A decrease in Atlantic heat transport would also lead to compensating153

warmth in the Southern Hemisphere, similar to the loading pattern of EOF2. However, the partic-154

ularly strong loading found across the Indian and Pacific ocean sectors of the Southern Ocean does155

not match the classic fingerprint of the oceanic bipolar seesaw 34. Similarly, the strong loading in156

the eastern North Pacific is not typical of a modeled response to an AMOC slowdown 1, 35, 36. It157

does, however, reflect the underlying proxy records from this region, which show a strong response158

of SST to North Atlantic climate variability 37. Columbia River megaflood meltwater forcing may159

have contributed to the severe cooling observed in deglacial SST records from the Gulf of Alaska160

37; however, step-wise deglacial cooling might also be explained by dynamic changes in the sub-161

polar gyre boundary 38.162

Comparison to proxy-only insights163

LGMR GMST shows several notable differences when compared to the proxy-only SMC recon-164

struction. Focusing first on pre-Holocene differences, the LGMR has a more abrupt onset of165

deglaciation at ∼17.1 ka, and a more muted Bølling-Allerød–Younger Dryas transition (Fig. 4a).166

The LGMR also indicates nearly twice as much glacial cooling, but this can be explained by the167

fact that the SMC is based mostly on SST proxies and was not scaled to infer GMST; we scale168

it here for comparison (Fig. 4a). To diagnose the origin of the other differences, we generated a169

proxy-only GMST reconstruction from our SST compilation (Methods). Even though our compi-170

lation has many more proxy SST records (and no terrestrial records), it is strongly correlated with171

SMC (R2 = 0.98).172

The similarity of the proxy-only reconstruction and the SMC illuminates at least two short-173

comings that are effectively mitigated by our data assimilation approach. First, proxy-specific174

GMST reconstructions suggest that the gradual deglacial onset is most likely linked to the Mg/Ca175

data, which show early deglacial SST increases relative to UK′
37 and δ18Oc (Extended Data Figure176

6a). Such differences may reflect proxy-specific spatial bias (Fig. 1); data assimilation will miti-177
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gate these differences by balancing signals from other nearby proxies. Second, data assimilation178

allows us to overcome problems associated with spatial aliasing in the proxy distribution. Unlike179

the enhanced Younger Dryas cooling shown by the proxy-only curves (Fig. 4a), LGMR reveals180

that Younger Dryas cooling was in fact confined to the Northern Hemisphere (and, specifically, the181

North Atlantic and North Pacific sectors; Extended Data Figure 7). Thus, the stronger expression182

of the YD in the proxy-only GMST curves could reflect Northern Hemisphere bias in the proxy183

distribution during the deglaciation (Fig. 1a).184

Holocene global temperature trends185

The LGMR provides an updated view of the “Holocene Temperature Conundrum” 2. All of the186

proxy-only reconstructions—including SMC, Temp12K 7, and ours—show a cooling trend that187

begins at ∼7 kyr BP and continues through the Holocene (Fig. 4b). In contrast, LGMR shows a188

small ∼0.25◦C but significant (94% probability, based on ensemble analysis) warming since ∼7189

kyr BP (Fig. 4b). The Holocene trend in LGMR does not come from the model prior; in fact, the190

model suggests a warmer mid-Holocene due to a prescribed “Green Sahara” (Methods; Extended191

Data Table 1). Rather, it is a feature of the assimilation. The early-mid Holocene warming in192

Mg/Ca (and, to a lesser extent, δ18Oc and UK′
37 ) that underlies the Conundrum is nearly eliminated193

after assimilating each proxy type into iCESM (Extended Data Figure 6). Such consistency implies194

that a warming trend through the Holocene is a robust solution. This solution is generally simi-195

lar to the temperature evolution simulated by TraCE-21k (Fig. 4b) indicating that the Holocene196

“Conundrum” is effectively resolved by data assimilation.197

Most likely, this is related to how data assimilation weights the proxies to compute a global198

average. Data assimilation weights proxies based on their uncertainties and the model-proxy co-199

variance structure, and uses this information to update the surface air temperature field. In contrast,200

proxy-only reconstructions rely on simple latitudinal binning and weighting. This renders the latter201

approach particularly sensitive to latitudinal bands with sparse proxy coverage or outliers. Sensi-202
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tivity tests (Methods) suggest that limited number of proxies in the Southern Ocean latitude band203

(45–60◦S) can account for about half of the early Holocene warmth in our proxy-only GMST curve204

(Extended Data Figure 6b). This implies the Holocene Conundrum may be, in part, an artifact of205

poor spatial averaging. More broadly, given that proxies are unevenly distributed, proxy-only re-206

constructions do not represent a true global average. In contrast, LGMR-based GMST is based on207

a spatially complete field, and thus is truly a global mean air temperature. This is a clear strength208

of the LGMR over existing reconstructions.209

Proxy seasonal bias may also play a role 2, 8. The LGMR uses proxy forward models that ac-210

count for seasonal plankton growth 19–21 and allow δ18Oc and Mg/Ca seasonality to change through211

time. Our proxy-only curves use inversions of the same models, but require that seasonality be212

temporally fixed. Thus, the proxy-only reconstructions could be more affected by seasonal bias.213

However, analyses exploring the impact of seasonally-biased records, as well as the “dynamic”214

seasonality in LGMR, indicate that seasonality has a minimal influence on the Holocene GMST215

trajectory in both proxy-only reconstructions and data assimilation (Extended Data Figure 6a-c).216

Within the confines of our forward modeling assumptions, seasonal bias is a less prominent con-217

tributor to the Conundrum than spatial weighting.218

Finally, the LGMR allows us to directly assess 20th and 21st century warming from the219

broader vantage point of the past 24 ka. When juxtaposed alongside the Last Millennium Reanal-220

ysis (also a paleoclimate data assimilation product 17) and observational HadCRUT5 11 (Fig. 2),221

we find that 2010–2019 mean GMST exceeds the upper bound (>99.9th percentile) of decadal-222

estimated values from the LGMR by a considerable margin: >0.5◦C, or +1.5◦C above mean223

Holocene GMST. These findings differ from those of Marcott et al. 6, who suggested that early224

21st century temperatures (2000–2009) had not yet exceeded early Holocene values and reflect in-225

creased confidence over ref. 7, who find that 2010–2019 warming is at the∼80% of mid-Holocene226

centennial-scale values. Similarly, we find the HadCRUT5-observed rate of 20th to 21st century227
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warming (0.96◦C per century) registers near the upper bound of LGMR deglacial warming rates228

(i.e.,>99th percentile, Fig. 5 and Methods). A similar conclusion is reached when comparing Had-229

CRUT5 warming rates to the monthly-resolved TraCE-21k simulation scaled to match the larger230

magnitude of deglacial warming shown by the LGMR (Fig. 5 and Methods) 1, 2. The LGMR under-231

scores the dramatic nature of anthropogenic warming, whose magnitude and rate appear unusual232

in the context of the last 24 ka.233
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Fig. 1. Locations and temporal coverage of the SST proxies. (a) Site locations of TEX86, Mg/Ca, UK′
37

and δ18Oc records (right), as well as their latitudinal distribution (left). Bubble diameter corresponds to
temporal coverage of each record. (b) Temporal coverage of the proxies, binned at 200 yr intervals.
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Fig. 2. Global mean surface temperature change over the last 24 kyr. Ensemble distribution (n = 500
posterior means) of LGMR GMST for the past 24 kyr (blue colors), with a decadal 95th-percentile range
(dotted-dashed lines) estimated using decadal-to-centennial variance ratios from iCESM (Methods). Shown
at top are spatial surface temperature anomalies relative to the last two millennia (“2k”, 0–2 ka) for intervals
discussed in the main text. The estimated last deglacial and interglacial onset timings are shown as dark and
light histograms at bottom (Methods). Reconstructed decadal GMST from the Last Millennium Reanalysis
v2.1 17 and HadCRUT5 observational product 11 are plotted to the right of the LGMR. ∆GMST is computed
relative to the pre-industrial last millennium average (1000–1850 CE).
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Fig. 3. Leading modes of LGM-to-present surface temperature variability. (a-b) Empirical orthogonal
function (EOF) 1 and EOF2 of surface air temperature during the last 24 kyr. (c) Comparison between the
associated principal component time series and climatic drivers. From top: PC1 (red) vs. greenhouse gas
(GHG) radiative forcing 24, albedo radiative forcing (derived following ref. 13), and combined GHG and
albedo radiative forcing; PC2 (blue); the “residual” component of the regression of 65◦S summer duration
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AMOC proxies from the Bermuda Rise (231Pa/230Th; error bars indicate 2σ uncertainty 31); the “trend”
component of the regression of 65◦S summer-duration onto PC2 (calculated as the residual of the regression
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Methods320

Proxy compilation and screening We collated a globally dispersed set of 573 sea surface temper-321

ature (SST) proxy records spanning the past 24 thousand years before present (kyr BP). Following322

ref. 10, we focus on geochemical proxies for SST including alkenone UK′
37 (146 records), the323

TetraEther indeX of 86 carbons (TEX86; 28 records), the elemental ratio of Mg to Ca in planktic324

foraminifera (Mg/Ca; 129 records), and the oxygen isotopic composition of planktic foraminifera325

(δ18Oc; 270 records). As in ref. 10, we limit our analyses to these proxies because we have already326

developed Bayesian forward models for each of them 18–21 that we can use in our paleoclimate data327

assimilation scheme (see “Paleoclimate data assimilation”, below). These data tend to cluster along328

coasts where sedimentation rates are high, and in regions where sampling efforts have historical329

focused (e.g., the Atlantic sector and Northern Hemisphere). By comparison, data coverage across330

ocean interiors—in particular, the Pacific and (to a lesser extent) Southern Oceans—is sparse. For331

consistency, we recalibrated all age models using the Marine13 radiocarbon calibration curve 39
332

with the BACON age model program 40 and local estimates of deviations from the global marine333

radiocarbon reservoir age (∆R). This procedure also allowed us to generate ensembles (n = 1,000)334

of possible age models for each record that were used to propagate dating uncertainties into our335

data assimilation product (c.f. sections “Paleoclimate data assimilation” and “Proxy-only global336

mean temperature” below).337

Some screening of our proxy compilation was necessary to remove low resolution, short,338

and adversely situated proxy records. Generally speaking, we removed records whose median age339

resolution was less than 1,000 years or were less than 4,000 years long (Extended Data Figure 1).340

However, the former constraint was relaxed for records situated in or near the Southern Ocean,341

where data coverage is sparse, so as to retain as many time series as possible from this undersam-342

pled region. To remove anomalous influences of sea ice on our proxy estimates (in particular, the343

influence of sea ice on the δ18O of seawater 20) we removed records situated at locations where344
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pre-industrial mean annual SSTs were less than 0◦C (a value assumed to roughly approximate the345

perennial sea ice edge), as estimated from the World Ocean Atlas 2013 product 41. This resulted in346

4 δ18Oc records being removed from locations each north of 80◦N. Following ref. 19, we also omit-347

ted all UK′
37 records situated north of 70◦N or within the modern Arctic sea ice zone, due to known348

biases in the alkenone temperature proxy that likely arise from lipid contributions from Isochrysi-349

dales species living in sea ice 42. We also removed two western Atlantic sites, OCE326-GGC26350

(43◦29′N, 54◦52′W) and OCE326-GGC30, (43◦53′N, 62◦48′W; ref. 43). While these UK′
37 records351

have been featured in prior mean global Holocene temperature reconstructions 6, they show an352

extremely large (up to 10◦C) cooling over the Holocene that most likely reflects a shift in the Gulf353

Stream/Labrador Current boundary 43. This poses a problem for our data assimilation technique,354

because CESM1.2 does not put this sharp boundary in the same place as observations. Assimi-355

lation of these sites thus has a tendency to cause a large regional bias in SSTs. Although similar356

issues arising in part from coarse model resolution probably afflict other frontal regions, no suf-357

ficient cause was found to warrant the removal of any additional records. All told, our selection358

criteria resulted in the removal of 34 records.359

Proxy-only global mean temperature reconstruction To provide a point of comparison for our360

data assimilation results, we generated a reconstruction of global mean temperature change using361

only the proxy data, broadly following the methodology of ref. 44. This was done by first estimating362

a “reference” pre-industrial proxy value for each site, and appending each value at the top of its363

respective N × 1 proxy record. This produced an (Ni + 1) ×1 vector of proxy values for each364

site i, where the +1 denotes the appended pre-industrial reference value. For sites with value(s)365

overlapping the pre-industrial (that is, 0–4 kyr BP; c.f. ref. 10), the pre-industrial reference was366

computed as the 0–4 kyr mean proxy value. For sites without pre-industrial overlap, reference367

proxy values were estimated by using the nearest core-top value 18–21. As in ref. 44, if no core-top368

locations existed within a threshold 300 km radius, an observational pre-industrial SST estimate369

was taken from the HadISST product 45 and forward modeled to a proxy estimate. All (Ni + 1)370
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×1 vectors were then calibrated to SSTs using the Bayesian inverse models 18–21. For the δ18Oc371

and TEX86 models 19, 20 we used prior standard deviation values of 10◦C, while for the UK′
37 and372

Mg/Ca models 18, 21 we used values of 5◦C and 6◦C, respectively. All prior standard deviation373

values are conservative, and only minimally impact the posterior. The Mg/Ca model, BAYMAG,374

also requires constraints on salinity, pH, and bottom water calcite saturation (Ω). The BAYMAG375

package includes functions to estimate past changes in salinity and pH. Briefly, following refs. 21
376

and 46, these functions scale the global sea level curve 47 to an inferred LGM global change of 1.1377

psu, then add this to the modern mean annual value of surface salinity for each site, as estimated378

from the World Ocean Atlas 2013 41. Similarly, to estimate changes in pH, BAYMAG scales the ice379

core CO2 record 48–53 to an inferred global increase of 0.13 pH units during the LGM, and then adds380

this curve to the modern mean annual value of surface pH estimated from the Global Ocean Data381

Analysis Project version 2 (GLODAPv2; 54). Following ref. 21, Ω is estimated at each records’382

bathymetric depth using the GLODAPv2 product and assumed to be constant through time. The383

δ18Oc model, BAYFOX, requires constraints on the time-evolution of δ18O of seawater. For this, we384

first scaled the benthic stack of ref. 55 to an estimated change in global δ18O of seawater (arising385

from changes in global ice volume) of +1h at the LGM (18 ka) relative to the pre-industrial386

following ref. 56. This scaled curve was then added to the modern mean annual δ18O of seawater387

value 57 and interpolated in time for each site.388

The posterior SST estimates produced by the Bayesian inverse models are a matrix of di-389

mension (Ni + 1) ×M , where M contains 1,000 possible SST histories and core-top reference390

values for each time entry Ni + 1 of each i site. These matrices were sorted from least to greatest391

along dimension M , which preserves the “shape” of the time series, after which a normally dis-392

tributed analytical uncertainty of N (0, 0.5◦) was added back to the sorted ensembles to account393

for laboratory precision (see also refs. 10 and 44). Finally, we converted each of our records to SST394

anomaly units relative to pre-industrial values (which we define as the last 4 ka mean for each site)395

by subtracting the first row of the (Ni + 1) ×M matrix (the pre-industrial core-top estimate) from396
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the remaining rows to generate an Ni ×M matrix of SST anomalies.397

In order to produce a global mean surface air temperature (GMST) anomaly curve, SST398

anomaly values and associated ages were randomly drawn from our ensemble of M posterior399

values and our ensemble of 1,000 age models, respectively, and then sorted into contiguous 200-yr400

bins spanning back to 24 ka. If more than one data point per record occurred in a given 200 yr401

bin, those SST data points were averaged, to ensure that higher-resolution records did not bias the402

bin. Following refs. 4, 10 and 58, the data within each time bin were binned by latitude, with the bin403

size randomly selected between 2.5 and 20◦, and then global average SST (GSST) was computed404

as the latitudinally weighted zonal average between 60◦S and 60◦N. Following ref. 4, 10, GSST was405

then scaled by a value randomly chosen between 1.5 and 2.3 to transform the values to GMST.406

This Monte Carlo process was repeated 10,000 times, to propagate errors arising from the SST407

estimation, age modeling, latitudinal weighting, and GSST to GMST scaling.408

Climate model simulations The climate model priors are drawn from newly developed and pre-409

existing climate simulations with the water isotope-enabled Community Earth System Model, ver-410

sions 1.2 and 1.3 (iCESM1.2 and iCESM1.3). CESM1.2 is an updated version of CESM1 59, and411

CESM1.3 contains further updates to the gravity wave scheme, cloud microphysics, and radiation412

60. Critical for our purposes, iCESM explicitly simulates the transport and transformation of stable413

water isotopes (e.g. H18
2 O, HDO) in all of the component models, and has been shown to reproduce414

key features of climate and isotopes in present-day and paleoclimate observations 22. All of the415

iCESM simulations have a horizontal resolution of 1.9 × 2.5◦ (latitude × longitude) in the atmo-416

sphere and land, and a nominal 1◦ in the ocean. Preexisting iCESM simulations used in this study417

include the pre-industrial and LGM simulations with iCESM1.3 61, the pre-industrial, 3 ka, 18 ka,418

and LGM simulations with iCESM1.2 10, and the Last Millennium simulation with iCESM1.2 62
419

(Extended Data Table 1).420

In addition, we developed new time-slice simulations using iCESM1.2 of 16, 14, 12, 9, and421

24



6 ka before present (Extended Data Table 1). For each time slice, the greenhouse gases (CO2,422

CH4, and N2O) were set to 200-year averages centered around the corresponding time from ice423

core reconstructions 63–65. Orbital parameters followed ref. 26. Ice sheet forcing was prescribed424

according to the ICE-6G reconstruction 66, including effects from changes in land elevation and425

surface properties and the land-sea mask due to sea-level variations. For each time-slice simula-426

tion, ocean temperature and salinity were initialized from published CESM1.2 simulations when427

available 67. Seawater δ18O (δ18Osw) was initialized from the slice before, e.g. δ18Osw of 18 ka428

branched from 21 ka. A spatially uniform correction was applied to salinity and δ18Osw to account429

for the ice-volume effect. The correction terms were derived by scaling changes in the global430

volume-mean salinity and δ18Osw between 21 and 0 ka by the corresponding change in the global431

mean sea level 47. Global volume-mean salinity and δ18Osw were 34.7 and 35.7 g kg−1 and 0.05432

and 1.05h in the 0 and 21 ka simulations, respectively 68. The iCESM1.2 time-slice simulations433

used pre-industrial aerosol emissions because of the lack of reliable global reconstructions 69. For434

a similar reason, the simulations used the pre-industrial vegetation cover except for the 9 and 6 ka435

slices (see description below). All these time-slice simulations were run for 900 years.436

A “Green Sahara” was implemented in both the 9 and 6 ka simulations by prescribing a 100%437

spatial coverage of shrub and C4 grass at 10–25◦N and 25–35◦N, respectively. In addition, C3 grass438

over the Northern Hemisphere high latitude regions (northward of 50°N) was replaced with boreal439

tree in the 6 ka simulation. These vegetation changes were developed following recommenda-440

tions from the Paleoclimate Modeling Intercomparison Project and represent maximum possible441

vegetation expansion over the Sahara and the Northern Hemisphere according to the pollen and442

macro-fossil evidence 70. To sample the uncertainty from vegetation, an additional 6 ka simulation443

was performed for 400 years with the pre-industrial vegetation cover, as another end-member of444

the mid-Holocene vegetation forcing. All the iCESM1.2 time slice simulations were run with a445

prescribed satellite phenology in the land model due to the overall poor simulation of vegetation446

processes with a prognostic phenology 71. The satellite observation-derived vegetation phenology447
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included leaf area and stem area indices, and vegetation heights.448

In addition, two water hosing experiments were performed within the 16 and 12 ka slices,449

respectively, to provide prior climate states for the millennial-scale events of the last deglaciation450

(i.e., Heinrich 1 and the Younger Dryas). In the hosing experiments, 0.25 Sv (1 Sv = 106 m3 s−1)451

of freshwater with a δ18O composition of −30h (VSMOW) were applied over the northern North452

Atlantic (50–70°N). These experiments were run for 200 years. AMOC is largely shut down after453

100 years in the water hosing simulations with a maximum transport at 34◦S reduced to ∼3 Sv454

from a background value of ∼18 Sv.455

Prior to using the simulations in our data assimilation, a paleoclimate calendar adjustment456

was applied to the monthly model output for all time slices to account for the effect of changing457

months on seasonal climatic expressions 72.458

Paleoclimate data assimilation The data assimilation method incorporates an offline ensemble459

square root Kalman Filter approach, following the methodology of ref. 10 using the data assimi-460

lation Matlab code package DASH version 3.6.1 (source code available at https://github.461

com/JonKing93/DASH). We refer the reader to this previous work for a full mathematical462

description. Briefly, the method combines a set of prior climate states from our model simula-463

tions (Xprior) with new information from the proxy observations (the “innovation”, yobs − Yest)464

to compute a “posterior” matrix of assimilated past climate states, Xpost. The posterior mean and465

deviations from the mean are each computed separately (c.f., ref.’s 10 and 73); the Kalman Filter466

mean “update” equation is:467

X̄post = X̄prior +K(yobs − Ȳest). (1)

Xprior is a N ×M matrix of prior climate states from iCESM, where dimension N contains the468

model grid point data for SST and SSS (both at monthly and mean-annual resolution), and mean-469

annual surface air temperature (SAT), δ18O of surface seawater (δ18Osw), precipitation amount-470

weighted δ18O (δ18Op), and mean-annual precipitation rate collapsed into a concatenated vertical471
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“state vector,” and dimension M represents the number of state vector ensemble members; the472

overbar in all cases denotes averaging across the ensemble dimension (producing, in this case, a473

vectorized ensemble “mean” update 73).474

The P × 1 vector yobs consists of P globally dispersed δ18Oc, Mg/Ca, UK′
37 , and TEX86475

proxy observations. The P ×M matrix Yest contains the corresponding set of P proxy estimates,476

generated from the model output from each M state using our Bayesian forward models. For477

details concerning the Bayesian models, the readers are referred to the original publications 18–21.478

In brief, the forward model for δ18Oc requires monthly SST and mean annual δ18Osw. These479

δ18Oc values are computed on a species- and growing season-specific basis 20 that allows us to480

explicitly account for foraminiferal seasonal preferences in our forward model proxy estimates.481

Both the UK′
37 and TEX86 models require only SST as inputs, with the former requiring monthly482

SST due to the seasonal response of UK′
37 production in the North Pacific, the North Atlantic, and483

the Mediterranean 19, and the latter only mean annual SST 18. Finally, the forward model for484

Mg/Ca requires both monthly SST and SSS to compute species-specific growing season Mg/Ca485

values, in addition to sea-surface pH, bottom water calcite saturation state (Ω), and the laboratory486

cleaning method. The latter is provided in the original publications, and SST and SSS are drawn487

from iCESM output. For pH and Ω, we follow the same procedure as the proxy-only reconstruction488

(described above).489

The innovation (yobs−Ȳest) represents the new information from the observations not already490

provided by the prior estimates. As shown in Eq. (1), these values are weighted by the N × P491

matrix K, the Kalman gain, which takes the general form:492

K = cov(Xprior, Yest) ∗ [cov(Yest, Yest) + R]−1 (2)

where “cov” denotes the covariance expectation (approximated by an ensemble mean, with the493

ensemble mean removed). The P × P matrix R prescribes the error covariance associated with494
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each proxy observation. Thus, the Kalman gain weights the innovation by the covariance of the495

forward-modeled proxy estimates with the prior climate states and the uncertainties of the prior-496

estimated proxy ensemble and the proxy observations. In our case, R is diagonal; i.e., the errors497

are presumed to be independent. R is user-defined, but ideally based on an estimate of “true”498

proxy uncertainties. Following 10, who systematically tested in the impact of different values of499

R on the posterior, we use the error values output from our Bayesian forward models scaled by500

1/5, but further refine this by specifying a slightly different scaling factor for each proxy type. To501

determine these proxy-specific factors, for each record we performed jack-knife (leave one record502

out) and “only-one record” assimilation experiments (no R scalings applied) in order to assess the503

ability of any particular record to predict all others when that record was either removed, or solely504

retained, respectively. From these experiments, we then ranked each record by validating the only-505

one and all-but-one reconstructions against the non-assimilated proxies. This allowed assessment506

for the percent of tests for which this proxy resulted in “improvement” (as denoted by the ratio of507

the posterior to prior squared error of all predicted, independent proxies, where a ratio less than508

unity indicates improvement). Using these rankings for each proxy type, we then weighted each509

proxy-specific scaling factor by the improvement factor, and subsequently weighted these rankings510

by total record count to maintain an average R-scaling of 1/5 across all available proxy records.511

The specific scaling factors that we calculated were ruk = 3.13−1, rtex = 1.36−1, rmgca = 2.86−1,512

and r18o = 7.27−1, indicating δ18Oc to be the most reliable (and numerous) proxy type.513

Following refs. 10 and 17, we applied covariance localization to the assimilation to limit514

spurious relationships between proxies and far-field regions. Validation testing suggested that a515

24,000 km localization radius provided optimal posterior results for our dataset (see “Internal and516

external validation testing” below). This differs from ref. 10, who used a more narrow 12,000 km517

localization. The improvement we find using broader localization likely relates to the fact that518

fewer proxies are assimilated here per time step than in ref. 10.519
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For computing our full 24 kyr “Last Glacial Maximum Reanalysis” (LGMR) product, we520

calculated Xpost at 200-year increments using the following approach. First, we selected 80% of521

our proxy records at random for inclusion in our assimilation, with the remaining 20% of records522

withheld for statistical validation (see “Internal and external validation testing” below). For each523

record, we randomly prescribed an age scale by drawing from the 1,000 viable posterior BACON-524

derived age models. Second, for each 200-year interval, yobs was compiled as all of the available525

proxy data points whose ages are within the bounds of the current reconstruction age-interval.526

When multiple data points from a single record occurred within a given 200-year age-interval,527

these values were averaged. We then randomly selected M = 60 state vector ensembles from the528

iCESM output using a transient “evolving prior” approach (see below), and used the Bayesian529

forward models to produce the matrix Yest. Xpost was then computed from yobs and Yest (Eq. 1)530

with R in the Kalman gain (Eq. 2) scaled to the appropriate proxy type. Finally, this process531

was repeated for a total 500 times for each time interval, to create a 500-member LGM-to-present532

ensemble of posterior states. This Monte Carlo procedure ensures that proxy, age-model, and533

model prior uncertainties are included in the assimilated product. Since the proxy age model534

uncertainties in particular can be on the order of centuries (interquartile range of ∼320–770 years535

across all data points), this sampling procedure has the effect of smoothing the posterior ensemble536

mean time series on sub-millennial timescales, as in prior proxy-only analyses 3, 4, 6.537

Assimilation of the LGM-to-present climate evolution at 200-year intervals directly reflects538

our underlying proxy data compilation. ∼96% of the proxy records have a median resolution that539

is higher than 200 years (Extended Data Figure 1). However, if all >60,000 compiled data points540

are considered together, >90% of the paleoclimate data have sample resolutions of ≤200 years.541

While ideally, the amount of time represented by the model prior would also equal 200 years,542

this would have considerably limited the number of model priors available (a maximum of 58543

prior states across our all iCESM time-slice simulations, and as few as 4 priors for a given interval;544

Extended Data Table 1). In order to increase the number of iCESM priors available for assimilating545
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our marine proxies while still roughly adhering to our reconstruction interval, we instead used 50-546

year average priors, following ref. 10. Prior experimentation by ref. 10 showed only marginal547

differences in LGM and pre-industrial posteriors once time-averaging of our iCESM prior fields548

exceed interannual time periods, justifying this choice.549

Assimilating Earth’s transient climate evolution between two fundamentally different glacial550

versus interglacial states presents a unique obstacle for offline paleoclimate data assimilation551

(which has largely focused on reconstructing the climate evolution of the Common Era 17, a rel-552

atively stable background climate state 9). In terms of Bayesian inference, the challenge is ade-553

quately assigning a collection of iCESM priors at each LGM-to-present reconstruction interval that554

reflects a reasonable prior belief in their viability. For example, a time interval in the late Holocene555

should not include glacial prior states that contain a Laurentide ice sheet, as the latter induces556

fundamental changes in spatial covariance that are not realistic for a deglaciated climate state.557

Conversely, deglacial prior states might include a range of possible Laurentide configurations.558

To address this issue, we developed an “evolving prior” approach. For each 200-yr interval,559

we defined a Normal probability density function (PDF) with a 1σ range of 4,000 years and a560

maximum cutoff range of 3σ (±12,000 years). The PDF is truncated to the range of our target time561

interval (24–0 ka), such that for the tail ends of the reconstruction interval, the PDF ends up being562

half-Normal. We then sampled 60 prior ages from this PDF and rounded them to 0, 3, 6, 9, 12,563

14, 16, 18, or 21 ka BP, the discrete time-slice intervals at which iCESM simulations are available564

(Extended Data Table 1). For each randomly drawn and rounded age, a model prior was selected565

(with replacement) from its corresponding iCESM time-slice simulation.566

The 1σ range of 4,000 years was chosen to balance the need to include adequate variability567

in the prior while still excluding model priors that are not physically justified (i.e., the inclusion568

of LGM priors when assimilating mid-late Holocene climatic states, and vice-versa). Similar to569

ref. 10, rank histogram analysis of our withheld validation proxies 74 suggested minimal mean570
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bias of our model priors using this 1σ length scale, but an apparent lack of structural variance (as571

suggested by a “U”-shaped rank histogram; c.f. Extended Data Figure 2 of ref. 10). While increas-572

ing the length scale to include a broader range of priors would increase prior variance, validation573

testing indicated that the 4,000-yr length scale was near-optimal, and also resulted in substantial574

improvement over an “agnostic” prior sampling scheme (e.g., one that assigns equal probability of575

including a prior from any given iCESM timeslice; see “Internal and external validation testing”,576

below). We note that the variance in our model prior is fundamentally restricted by the use of a577

sole model (iCESM). Further work is needed to test the sensitivity of the LGMR reconstruction to578

the use of different isotope-enabled model priors (once available).579

Internal and external validation testing Statistical validation and tuning of our LGMR product580

was conducted in two ways, referred hereafter as “internal” and “external” validation. The first581

approach (“internal” validation) involves withholding 20% of the marine proxies per iteration (see582

“Paleoclimate data assimilation”, above), and then using the posterior SST, SSS, and δ18Osw fields583

to forward model the withheld proxy records. These predicted proxy records were then compared584

with the actual proxy records using standard skill diagnostics: the coefficient of efficacy (CE; a585

value between –∞ and 1, where a value >0 is conventionally taken to represent skill over clima-586

tology), the squared Pearson product moment coefficient (R2), and the root mean square error of587

prediction (RMSEP ). The computation of multiple posterior ensembles (i.e., N = 500), each588

with 20% withholding, implies each proxy record was randomly withheld and internally validated589

on average 100 times. These tests yield, on average, CE values that are greater than 0 with no ob-590

vious signs of systematic spatial biasing, indicative of skill in our posterior assimilation above our591

evolving iCESM prior fields. On a global basis all posterior-predicted proxies exhibit a strong cor-592

respondence to observed values with R2 > 0.95 and slopes within 5% of their respective 1:1 lines593

(Extended Data Figure 2), indicating a lack of systematic bias in the LGMR oceanic climatologies.594

Following ref. 10, we also use independent ice core and speleothem records of δ18Op to595
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externally validate the LGMR. In this more stringent analysis, we compare posterior δ18Op to596

published ice core δ18O (which is taken as a direct indicator of precipitation-weighted mean-annual597

δ18Op, given that post-depositional processes such as isotopic diffusion 75 and sublimation 76 do not598

typically impact ice core record integrity across centennial and longer time scales) and speleothem599

δ18O, which is first converted to δ18Op via the methodology of ref. 77 (see also ref. 10). For600

the speleothem data, we used the SISAL version 1b database 78. Records were included in our601

compilation solely on the basis that they span at least 18,000 years: that is, at least three-quarters602

of the LGMR reconstruction interval, ensuring overlap with the deglacial period (ca. 17–9 ka;603

Fig. 2). Record-specific details are provided in Extended Data Table 2. Following ref. 10, we604

focus on δ18Op deviations (∆δ18Op), which we generate by differencing all δ18Op values at each605

time slice interval relative to the 0 ka baseline. This approach is premised on the expectation that606

δ18Op deviations should be adequately captured by LGMR 10 despite known mean δ18Op biases607

in iCESM 22. We then compare both prior and posterior ∆δ18Op with observed ∆δ18Op at the608

iCESM timeslice intervals (3, 6, 9, 12, 14, 16, 18, and 21 ka BP) using our statistical diagnostics609

of covariance and prediction error (R2 and RMSEP ). Positive ∆R2 (i.e., a stronger relationship610

with observed values in LGMR vs. the prior) and negative ∆RMSEP (i.e., reduced prediction611

error in LGMR vs. the prior) imply improvement in our LGMR posterior relative to the iCESM612

priors.613

Overall, this external validation test indicates that LGMR substantially improves over the614

prior, with a nearly 30% error reduction (RMSEPprior = 2.60h; RMSEPposterior = 1.92h) and615

approaching 2× greater variance explained in with our posterior-predicted values relative to the616

prior (R2
prior = 0.37; R2

posterior = 0.62). Although much of the improvement is driven by ice core617

∆δ18Op estimates (Extended Data Figure 3 and Extended Data Figure 4), offsets with speleothem618

∆δ18Op observations are also strongly reduced in LGMR relative to iCESM. The comparably poor619

temporal covariance shown by global speleothem ∆δ18Op values relative to ice cores (Extended620

Data Figure 4; Extended Data Table 2) may reflect local-scale influences on speleothem δ18Op621
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records, such as groundwater storage, mixing, recharge, and residence time variations; subgrid-622

scale topographic and (or) precipitation influences; and uncertainties arising from indirectly infer-623

ring δ18Op from δ18Ocalcite or δ18Oaragonite measurements 77. In addition, the iCESM prior range624

of δ18Op across the LGM to present in the tropics is considerably smaller than in the high latitudes625

(e.g., Extended Data Figure 4), which might restrict the posterior solutions for the speleothems626

(c.f. ref. 10).627

We used external validation testing to choose both the covariance localization radius and628

evolving prior 1σ range (see ”Paleoclimate data assimilation” for description of each). Between629

the two, our tests show that LGMR is most sensitive to the choice of localization radius. We tested630

values between 6,000 and infinite (i.e., no localization) km and found a relatively broad localization631

cutoff (24,000 km) is near-optimal (Extended Data Table 3). In contrast, LGMR shows comparably632

less sensitivity to choice of the 1σ range for sampling iCESM priors, with acceptable external633

validation scoring for values between 1σ = 2,000–6,000 years (Extended Data Table 3). For our634

final LGMR product we chose a value of 1σ = 4000 years as this was shown to provide near-635

optimal validation scoring (Extended Data Table 3), while also constituting a reasonable “middle636

ground” between enabling adequate variance amongst iCESM model priors throughout the last 24637

kyr while excluding physically unjustifiable states (see discussion above).638

Empirical Orthogonal Function (EOF) analysis We assessed the drivers of global surface tem-639

perature change during the last 24 kyr using Empirical Orthogonal Function (EOF) analysis,640

extending prior LGM-to-present EOF analyses that focused solely on sparsely situated global641

temperature-proxy data 32, 33 and 79. The aim of EOF analysis is to decompose a spatiotempo-642

ral dataset into a set of spatial “modes” and associated “principal component” time series, each643

describing progressively less of the original LGMR variance and subject to the constraint of or-644

thogonality. Our decomposition of LGMR followed standard practice (e.g., ref. 80), wherein global645

grid points were first centered to mean zero and subsequently weighted by the cosine of the cor-646

33



responding latitude. We focused on the first two modes of variability, EOF1 and EOF2 (and their647

associated principal component time series, PC1 and PC2), as only these were deemed to be both648

significantly distinct from background noise and physically meaningful. The significance of EOF1,649

in particular, was unequivocal: it explains 92% of the LGMR variance, and clearly encompasses650

the globally coherent LGM to present warming driven by deglaciation of the Northern Hemisphere651

ice sheets and rising greenhouse gases (Fig. 3c). The significance of EOF2 was less clear since it652

describes only ∼3.5% of the LGMR variance. However, analysis of the relative uncertainty range653

ascribed to this mode (95% confidence of ∼1.8–5.2%) via the “North rule of thumb” 80, 81, as well654

as secondary testing using the “broken stick” method 82, each suggested this mode was distinct655

from successive modes (that each describe, in turn, ≤1% variance). Moreover, the bipolar spatial656

loading pattern of EOF2 is also physically consistent with expectations from prior work (see main657

text discussion; 32, 33 and 79).658

Proxy specific reconstructions We assessed the influence of each proxy type on our results by659

conducting proxy-specific reconstructions of LGM-to-present GMST using both our “proxy-only”660

(see, “Proxy-only global mean temperature reconstruction”, above) as well as data assimilation661

(see, “Paleoclimate data assimilation”, above) approaches. Due to the limited number of TEX86662

records, our analysis is focused on UK′
37 , Mg/Ca, and δ18Oc. Overall, we find that GMSTs are,663

on average, mildly warmer in our proxy-only reconstructions than in our data assimilation results664

across all proxy types, a difference that is especially pronounced during the early Holocene (ca665

9–6 ka) period (Extended Data Figure 6a). The proxy-only Mg/Ca reconstruction appears to be666

the least internally consistent of the six reconstructions (Extended Data Figure 6a) implying that it667

is the least reliable proxy type. Most likely, this reflects the multivariate sensitivity of this proxy.668

In particular, since our iCESM simulations do not include an interactive ocean carbon cycle, we669

make basic assumptions about surface water pH and bottom water saturation to forward model670

Mg/Ca. Bottom water saturation (Ω) in particular is the second-most important environmental671

influence on foraminiferal Mg/Ca after temperature 21, and must have changed dramatically across672
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the deglacial transition. Unfortunately, we lack good constraints on Ω, so we must assume that673

it is constant through time. Despite these concerns, we do not have probable cause nor reason674

to consider Mg/Ca inherently “incorrect,” and it is clear from the proxy-specific experiments that675

data assimilation draws the Mg/Ca data closer to a solution that is consistent with UK′
37 and δ18Oc676

(Extended Data Figure 6a).677

Comparing Holocene GMST trends The proxy-specific reconstructions (Mg/Ca in particular)678

show cooling across the Holocene since about 8 ka (Extended Data Figure 6a), a feature that trans-679

lates into the full proxy-only reconstruction (Fig. 4a). However, these trends are altered after680

assimilating the same proxy data with iCESM; the cooling trend in Mg/Ca is attenuated, and the681

stable Holocene temperature evolution implied by δ18Oc becomes a warming trend when assimi-682

lated with iCESM. Several assessments were thus conducted to explore the source of differences683

between the Holocene GMST trend in the LGMR and the long-term cooling implied by our (and684

prior studies’ 4, 6, 7) proxy-only reconstruction(s). These tests focused on isolating the influence685

of proxies from particular latitudinal bands and assessing the influence of proxy seasonal biases.686

To determine whether proxies from certain latitudes had a large influence on the reconstructions,687

we systematically removed records situated in contiguous intervals of 15◦ latitude between 60◦S688

to 60◦N. Proxy-only GMST reconstructions show a strong sensitivity to the removal of records689

situated between 60◦S to 45◦S: when removed, GMST cools by ∼0.2–0.3◦C across the Holocene,690

with a reduction of ∼50% during the early Holocene (Extended Data Figure 6b). The Southern691

Ocean zonal band represents <5% of the proxy database, but includes records that have a notably692

warm early Holocene 83, 84. While these records are a robust representation of Southern Ocean693

SST, since the proxy-only reconstruction method relies on zonal mean averages 3, 4,44, these data694

become upweighted and thus have a stronger influence on the global mean than data from proxy-695

rich zonal bands. Data assimilation is not subject to this restriction and so the removal of Southern696

Ocean records does not result in Holocene GMST trends that are overtly anomalous (Extended697

Data Figure 6b). Rather, data assimilation shows the largest deviations—a positive excursion of698
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∼0.2-0.3◦C across the Holocene—when northern mid-high latitude (45◦N to 60◦N) records are699

removed, possibly reflecting the omission of cold Northern Hemisphere SST anomalies related to700

the presence of the Laurentide and Eurasian ice sheets. The global propagation of such anomalies701

is not explicitly accounted for in the proxy-only approach, which may explain why the omission702

of high-latitude Northern Hemisphere sites has less of an influence on these reconstructions.703

We tested the influence of seasonal bias on the proxy-only reconstructions by removing704

δ18Oc, UK′
37 and Mg/Ca records that, according to our proxy forward models, are seasonally-biased705

in the present day (50 δ18Oc, 20 Mg/Ca, and 24 UK′
37 records). The removal of these records did not706

result in noticeably different Holocene GMST trends (Extended Data Figure 6a), implying either707

a) that the proxy-only Holocene GMST cooling trends are not caused by seasonal bias, or b) that708

the assumption that seasonal bias remains static through time is insufficient. The latter possibility,709

in particular, should not be understated given the potential for large seasonal changes in SST in710

response to orbital forcing 8.711

Our data assimilation method attempts to overcome the static seasonality limitation by allow-712

ing for dynamic seasonality changes based on the model priors, which are in turn used to forward713

model δ18Oc and Mg/Ca 20, 21. To isolate the influence that accounting for dynamic seasonality has714

on our data assimilation solution, we created a suite of proxy-specific GMST reconstructions using715

both annual mean and fixed seasonality forward models. For δ18Oc and Mg/Ca, this was done by716

using the “pooled-annual” and “pooled-seasonal” models, as well as running the species-specific717

models with seasonality fixed to either the LGM or preindustrial assumption. Unlike the “species-718

specific” forward models, which require monthly SSTs to estimate δ18Oc and Mg/Ca on both a719

seasonal and per-species basis (c.f. “Paleoclimate Data Assimilation”, above), the pooled models720

predict δ18Oc and Mg/Ca across all species, using either annual mean SST or seasonal average SST721

(static, based on modern seasonality) 20, 21. Use of these forward models thus tests the influence722

of the species-specific calibrations on the data assimilation results. By fixing the seasonality in723
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the species-specific models, we can further isolate the impact that dynamic seasonality has on the724

LGMR. Use of the pooled-annual and pooled-seasonal forward models, as well as the fixed season-725

ality models, had virtually no impact on the δ18Oc-based GMST reconstructions (Extended Data726

Figure 6c). In contrast, Mg/Ca-based GMST was considerably warmer (+2◦C ∆GMST) during the727

early Holocene when the pooled models were used (Extended Data Figure 6c). This suggests that728

accounting for species-specific differences is critical for the Mg/Ca proxy. However, the pooled729

results cannot explain early Holocene warmth in the proxy-only reconstructions, because these use730

the species-specific models. Furthermore, fixing the Mg/Ca seasonality at both preindustrial and731

LGM values had the effect of reducing early Holocene warmth (Extended Data Figure 6c), which732

suggests that the warmer early Holocene in the proxy-only Mg/Ca reconstruction is not (within733

the limits of our forward modeling assumptions) strictly due to seasonal bias. The pooled model734

results for Mg/Ca also demonstrate that the DA method can yield a Holocene cooling trend if the735

underlying proxy data suggest it, ruling out the possibility that the Holocene trend in LGMR is736

coming exclusively from the model prior (c.f. Extended Data Table 1).737

Overall, our sensitivity tests suggest that the differences between the LGMR GMST evo-738

lution and those based on proxy-only methods do not have a singular origin; however, the way739

in which individual proxy records are weighted—by latitude for proxy-only reconstructions vs.740

based on covariance structures for the LGMR—appears to be the most important factor. It remains741

possible that seasonal bias contributes, but within the constraints of our forward models, it does742

not seem to be the primary factor. Although future testing with different model priors is needed,743

our experiments also demonstrate that the LGMR Holocene evolution is not a precondition of the744

model prior (Extended Data Table 1), which includes warm early Holocene simulations and can745

allow for a cooling trend if the underlying proxies suggest it (Extended Data Figure 6c).746

Timing of last deglacial and interglacial onset We quantify the onset timing of the last deglacial747

and current interglacial periods by considering GMST of the last 24 ka as a linearly contiguous748
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three part sequence: a glacial period, a deglacial period, and an interglacial period. We incorporate749

the changepoint methodology of ref. 85 to isolate the two leading changepoints separating these750

three periods, accounting for time and temperature uncertainty through Monte Carlo randomization751

(n = 10, 000). In each iteration, we produce a surrogate 24 ka GMST time series by 1) normal752

random sampling of temperature for each 200-yr interval, using the LMGR ensemble mean and753

standard deviation and 2) uniform random sampling an associated age for each 200-yr interval.754

For each resultant time- and temperature-perturbed global mean temperature time series, we then755

determine the location of the two changepoints; for each iteration, we assume that the leading756

changepoint denotes the deglaciation onset and that the second changepoint denotes the interglacial757

onset. Both routines, in addition to randomization of proxy age models used to generate the LGMR758

GMST time series, ensure conservative change-point constraints implying a deglaciation onset at759

17.1 ka (18.5–16.1 ka 95% confidence interval), and an interglacial onset at 9.3 (10.9–8.4) ka (Fig.760

2).761

Contextualizing the rate and magnitude of modern warming In order to compare the mag-762

nitude of industrial-era warming (from the HadCRUT5 product 11) to global temperature changes763

estimated by LGMR, we first adjusted the LGMR and HadCRUT5 GMST anomalies to a common,764

overlapping frame of reference. This was accomplished by re-centering GMST estimates from the765

Last Millennium Reanalysis (LMR) v2.1 17 as anomalies relative to 1000–1850 CE, and then ad-766

justing LGMR and HadCRUT5 to this LMR frame of reference during their respective overlapping767

periods: 1000–1950 CE for LGMR and 1850–2000 CE for HadCRUT5. Next, in order to directly768

compare decadal-mean HadCRUT5 GMST values to LGMR GMST values, we adjusted the latter769

for decadal-to-centennial variance attenuation. This was done by individually scaling the LGMR770

GMST ensemble variance by the GMST decadal-to-centennial mean variance ratio from iCESM at771

each reconstruction time interval using our evolving prior approach (see Fig. 2). This adjustment772

produces pseudo decadal-mean GMST values for all LGMR time intervals, rendering compari-773

son to HadCRUT5 decadal-mean GMST more direct and conservative. Comparison between the774
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decadal-adjusted LGMR and HadCRUT5 indicates that decadal mean GMST exceeded the range775

(>99th percentile) of Holocene values by the turn of the 21st century (2000–2009; Fig. 2). Dur-776

ing the most recent decade (2010–2019), GMST exceeded maximum Holocene values by a more777

considerable margin: >0.5◦C, corresponding to +1.5◦C above mean Holocene GMST.778

To compare the centennial-scale rate of temperature change in LGMR to HadCRUT5, we779

randomly sampled GMST (n = 10,000) from the decadal-adjusted LGMR for each time interval780

across the deglaciation (ca. 17.1–9.3 ka; see “Timing of last deglacial and interglacial onset”,781

above), which contains the largest and most rapid changes in GMST during the last 24 kyr (Fig.782

2). These randomly sampled values of GMST were then used to estimate rates of change across783

adjoining time intervals, allowing us to develop a broad distribution of possible deglacial warming784

rates. We emphasize that this approach is largely unaffected by our assimilation of randomly sam-785

pled proxy age models, which induces centennial-scale smoothing in the LGMR ensemble mean786

but does not truncate the inter-centennial variance across individual ensemble members (nor, by787

association, the range of centennial-scale deglacial GMST warming rates). We verified this by788

computing LGMR deglacial warming rates without proxy age uncertainty modeling (not shown).789

In addition, as a secondary test we also compared rates of modern warming to the monthly-resolved790

TraCE-21k simulation 1, 2. For this test, we applied a scaling of∼1.6× to TraCE-21k ∆GMST prior791

to computing rates of centennial-scale GMST warming (analyzed decade-wise across the deglacia-792

tion), thus maintaining consistency with the greater deglacial warming shown by LGMR while also793

providing a more conservative comparison to modern warming. Collectively, our analysis shows794

that by the early 20th to 21st century (1910–2009 CE), the rate of warming (0.84◦C century−1)795

exceeded the 99th percentile of composited warming rates for all time intervals of the deglaciation796

for both LGMR and TraCE-21k. In the ensuing (most recent) decade the rate of centennial-scale797

GMST change has risen by an additional ∼16% (0.98◦C century−1 for the period 1920–2019 CE),798

underscoring the unusual nature of 21st century warming (Fig. 5b).799
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Code availability The MATLAB code used for the reconstruction (DASH) are publicly available

(https://github.com/JonKing93/DASH), as are all accompanying Bayesian proxy for-

ward models (BAYSPAR, BAYSPLINE, BAYFOX, and BAYMAG) used in this study (https://

github.com/jesstierney). The iCESM1.2 model code is available at https://github.

com/NCAR/iCESM1.2.

Data availability We have temporarily uploaded the LGMR proxy data compilation and assim-

ilated results to the following Dropbox folder for reviewer and editorial access, if needed: https:

//www.dropbox.com/sh/rmc6qkc767fo8fi/AAAMR6kw4HM1bjoN9vI_apmsa?dl=

0. Pending formal acceptance, all LGMR and associated proxy data will be made publicly avail-

able on the NOAA Paleoclimate dataverse (designated URL: https://www.ncdc.noaa.

gov/paleo/study/33112).
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Extended Data Figure 1. Time resolution and temporal coverage of the SST proxy data compilation.
(a). Histogram of record resolution (denoting the median sample resolution for each record), computed for
each proxy type. (b) Histogram of record length for each proxy type.
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Extended Data Figure 2. Statistical validation of randomly withheld marine geochemical proxies.
(a) From left: observed vs. forward-modeled δ18Oc mean values for each site using the posterior data
assimilation estimates. Shown at right are the associated median R2
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∼100 LGMR ensemble members), computed on a per-site basis (see Methods section “Internal and external
validation testing”). (b-d) As in (a), but for UK′

37 , Mg/Ca, and TEX86, respectively.
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Extended Data Figure 3. Validation using independent δ18Op ice core and speleothem records. (a)
3 ka - preindustrial (PI) posterior ∆δ18Op field; overlying markers show the observed 3 ka - PI ∆δ18Op

values from speleothems and ice cores. Only records spanning at least 18 of the last 24 ka are shown. ∆R2

and ∆RMSEP values denote the change in observed vs. posterior assimilated ∆δ18Op values relative to
the prior (i.e., iCESM) estimated values. (b-h) As in (a), but for values differenced at 6, 9, 12, 14, 16, 18,
and 21 ka vs. the PI, respectively. (i) All observed ∆δ18Op vs. model prior values; dashed line indicates
the 1:1 relationship. (j) All observed ∆δ18Op vs. posteriors, which shows a strong improvement in ∆R2

and ∆RMSEP over the prior. Note that each scatter point shown in panels (i-j) corresponds to an external
validation site shown in panels (a-h).
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Extended Data Figure 5. Influences on global surface temperature evolution during the last 24 ka.
Spatial LGM-to-present correlations between SAT and (a) combined greenhouse gas 24 and global albedo
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Extended Data Table 1. Information on the iCESM simulations used for generating model priors.
Greenhouse gas concentrations are in ppm for CO2 and ppb for CH4 and N2O. Global mean seawater δ18O
(δ18Osw) is in h relative to the Vienna Standard Mean Ocean Water (VSMOW). See Methods for details of
the implementation of vegetation and freshwater forcing in related simulations.

Age Model Number Greenhouse gas Global GMST Citation
(ka) description of priors (CO2/CH4/N2O) δ18Osw range (◦C)

0 iCESM1.2: PI 16 285 / 792 / 276 0.05 14.03–14.25 10

0 iCESM1.2: PI 10 285 / 792 / 276 0.05 13.22–13.33 61

0 iCESM1.3: PI 10 285 / 792 / 276 0.05 13.68–13.84 61

0 iCESM1.2 Last Millennium 20 Transient 0.05 12.96–13.26 62

Member #2: 850-1850 CE
0 iCESM1.2 Last Millennium 20 Transient 0.05 12.98–13.27 62

Member #3: 850-1850 CE
3 iCESM1.2: 3 ka 16 275 / 580 / 270 0.05 13.99–14.14 10

6 iCESM1.2: 6 ka w/ 16 264 / 597 / 262 0.05 14.14–14.62 This study
Sahara & 50–90°N greened

6 iCESM1.2: 6 ka 8 264 / 597 / 262 0.05 14.03–14.19 This study
9 iCESM1.2: 9 ka w/ 16 260 / 659 / 255 0.34 13.87–14.09 This study

Sahara greened
12 iCESM1.2: 12 ka 16 253 / 478 / 236 0.59 12.61–12.76 This study
12 iCESM1.2: 12 ka w/ 4 253 / 478 / 236 0.59 10.79–11.77 This study

freshwater over N. Atl.
14 iCESM1.2: 14 ka 16 238 / 637 / 255 0.73 10.05–10.32 This study
16 iCESM1.2: 16 ka 16 224 / 452 / 199 0.90 9.27–9.45 This study
16 iCESM1.2: 16 ka w/ 4 224 / 452 / 199 0.90 7.63–8.45 This study

freshwater over N. Atl.
18 iCESM1.2: 18 ka 16 190 / 370 / 245 1.02 8.00–8.13 10

21 iCESM1.2: 21 ka 16 190 / 375 / 200 1.05 7.41–7.87 10

21 iCESM1.3: 21 ka 18 190 / 375 / 200 1.05 6.40–7.37 61
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Extended Data Table 2. Geographical and site identification information for ice core and speleothem
δ18Op records used for LGMR external validation.

Proxy class Site name Lat. (◦N) Lon. (◦E) R2 CE Citation
Ice core Byrd -80.02 -119.53 0.82 -0.71 86

Ice core EDC -75.10 123.35 0.89 0.49 87

Ice core EDML -75.00 0.07 0.86 0.78 87

Ice core Fuji -77.32 38.70 0.83 0.66 88

Ice core Siple -81.65 -149.00 0.88 0.64 89

Ice core TALDICE -72.82 159.18 0.89 0.76 90

Ice core Taylor -77.78 158.72 0.65 -0.65 91

Ice core Vostok -78.46 106.84 0.88 0.85 92

Ice core WAIS -79.47 -112.00 0.87 0.22 93

Ice core Renland 71.27 -26.73 0.74 0.20 94

Ice core GISP2 72.60 -38.50 0.65 0.05 95

Ice core GRIP 72.58 -37.63 0.58 -0.21 96

Ice core NGRIP 75.10 -42.33 0.71 0.55 97

Speleothem Cold Air cave -24.00 29.18 0.08 -14.58 98

Speleothem Jaraguá cave -21.08 -56.58 0.27 -1.63 99

Speleothem Jeita cave 33.95 35.65 0.01 -15.69 100

Speleothem Mawmluh cave 25.26 91.88 0.42 -4.47 101

Speleothem Liang Luar cave -8.53 120.43 0.06 -5.19 102

Speleothem Bukit Assam cave 4.03 114.80 0.04 -5.23 103

Speleothem Xiaobailong cave 24.20 103.36 0.20 -3.55 104

Speleothem Sofular cave 41.42 31.93 0.04 -1.86 105

Speleothem Botuverá -27.22 -49.16 0.10 -7.88 106

Speleothem Gunung-buda cave 4.03 114.80 0.02 -2.66 103

Speleothem Nettlebed cave -41.25 172.63 0.27 -4.11 107

Speleothem Soreq cave 31.76 35.02 0.17 -5.45 108

Speleothem El Condor cave -5.93 -77.30 0.02 -0.42 109

Extended Data Table 3. External validation statistics associated with different choices of covariance
localization and the 1σ “length-scale” range of the evolving prior sampling. ∆R2 and ∆RMSEP
values denote the change in observed vs. posterior assimilated ∆δ18Op values relative to the prior iCESM
estimated values; larger ∆R2 and smaller ∆RMSEP thus denote greater improvement in the assimilated
posterior relative to iCESM (see Extended Data Figure 2i-j for plotted LGMR values). For localization
testing, listed ∆R2 and ∆RMSEP values represent the median across all (n = 6) length-scale tests; for
length-scale testing, listed ∆R2 and ∆RMSEP values represent the median across all (n = 8) localization
tests.

Localization (km) : 6,000 9,000 12,000 15,000 18,000 21,000 24,000 ∞
∆R2 0.09 0.19 0.23 0.24 0.24 0.25 0.25 0.16

∆RMSEP (h) -0.54 -0.59 -0.63 -0.63 -0.64 -0.72 -0.73 -0.34
Length scale (yr) : 2,000 3,000 4,000 5,000 6,000 ∞

∆R2 0.23 0.24 0.25 0.24 0.23 0.18
∆RMSEP (h) -0.63 -0.62 -0.64 -0.65 -0.69 -0.58
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